Thermoelectric properties of graphene nanoribbons, junctions and superlattices.

نویسندگان

  • Y Chen
  • T Jayasekera
  • A Calzolari
  • K W Kim
  • M Buongiorno Nardelli
چکیده

Using model interaction Hamiltonians for both electrons and phonons and Green's function formalism for ballistic transport, we have studied the thermal conductance and the thermoelectric properties of graphene nanoribbons (GNR), GNR junctions and periodic superlattices. Among our findings we have established the role that interfaces play in determining the thermoelectric response of GNR systems both across single junctions and in periodic superlattices. In general, increasing the number of interfaces in a single GNR system increases the peak ZT values that are thus maximized in a periodic superlattice. Moreover, we proved that the thermoelectric behavior is largely controlled by the width of the narrower component of the junction. Finally, we have demonstrated that chevron-type GNRs recently synthesized should display superior thermoelectric properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

اثر تهی‌جای‌های گسترده بر خواص گرمایی نانونوارهای آرمچیری گرافن

This paper shows a theoretical study of the thermal properties of armchair grapehen nanoribbons in the presence of extended vacancies. Each graphene nanoribbons formed by superlattices with a periodic geometric structure, different size and symmetry of vacancies. The phonon dispersion, specific heat and thermal conductivity properties are described by a force-constant model and also by Landauer...

متن کامل

Elastic properties of edges in BN and SiC nanoribbons and of boundaries in C-BN superlattices: A density functional theory study

Using density functional theory calculations, we compute the edge energies and stresses for edges of SiC and BN nanoribbons, and the boundary energies and stresses for domain boundaries of graphene-BN superlattices. SiC and BN armchair nanoribbons show pronounced edge relaxations, which obliterate the threefold oscillatory behavior of the edge stress reported for graphene. Our calculations show...

متن کامل

Engineering enhanced thermoelectric properties in zigzag graphene nanoribbons

We theoretically investigate the thermoelectric properties of zigzag graphene nanoribbons in the presence of extended line defects, substrate impurities, and edge roughness along the nanoribbon’s length. A nearest-neighbor tight-binding model for the electronic structure and a fourth nearest-neighbor force constant model for the phonon bandstructure are used. For transport, we employ quantum me...

متن کامل

Enhancing the thermoelectric figure of merit in engineered graphene nanoribbons

We demonstrate that thermoelectric properties of graphene nanoribbons can be dramatically improved by introducing nanopores. In monolayer graphene, this increases the electronic thermoelectric figure of merit ZT e from 0.01 to 0.5. The largest values of ZT e are found when a nanopore is introduced into bilayer graphene, such that the current flows from one layer to the other via the inner surfa...

متن کامل

A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons

We propose a hybrid nano-structuring scheme for tailoring thermal and thermoelectric transport properties of graphene nanoribbons. Geometrical structuring and isotope cluster engineering are the elements that constitute the proposed scheme. Using first-principles based force constants and Hamiltonians, we show that the thermal conductance of graphene nanoribbons can be reduced by 98.8% at room ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of physics. Condensed matter : an Institute of Physics journal

دوره 22 37  شماره 

صفحات  -

تاریخ انتشار 2010